Detecting sentiment embedded in Arabic social media - A lexicon-based approach

نویسندگان

  • Rehab Duwairi
  • Nizar A. Ahmed
  • Saleh Y. Al-Rifai
چکیده

Sentiment analysis aims at extracting sentiment embedded mainly in text reviews. The prevalence of semantic web technologies has encouraged users of the web to become authors as well as readers. People write on a wide range of topics. These writings embed valuable information for organizations and industries. This paper introduces a novel framework for sentiment detection in Arabic tweets. The heart of this framework is a sentiment lexicon. This lexicon was built by translating the SentiStrength English sentiment lexicon into Arabic and afterwards the lexicon was expanded using Arabic thesauri. To assess the viability of the suggested framework, the authors have collected and manually annotated a set of 4400 Arabic tweets. These tweets were classified according to their sentiment into positive or negative tweets using the proposed framework. The results reveal that lexicons are helpful for sentiment detection. The overall results are encouraging and open venues for future research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media

Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...

متن کامل

Combining Lexical Features and a Supervised Learning Approach for Arabic Sentiment Analysis

The importance of building sentiment analysis tools for Arabic social media has been recognized during the past couple of years, especially with the rapid increase in the number of Arabic social media users. One of the main difficulties in tackling this problem is that text within social media is mostly colloquial, with many dialects being used within social media platforms. In this paper, we p...

متن کامل

Sentiment Analysis For Modern Standard Arabic And Colloquial

The rise of social media such as blogs and social networks has fueled interest in sentiment analysis. With the proliferation of reviews, ratings, recommendations and other forms of online expression, online opinion has turned into a kind of virtual currency for businesses looking to market their products, identify new opportunities and manage their reputations, therefore many are now looking to...

متن کامل

A Supervised Method for Constructing Sentiment Lexicon in Persian Language

Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...

متن کامل

Detecting the Reputation Polarity of Microblog Posts

We address the task of detecting the reputation polarity of social media updates, that is, deciding whether the content of an update has positive or negative implications for the reputation of a given entity. Typical approaches to this task include sentiment lexicons and linguistic features. However, they fall short in the social media domain because of its unedited and noisy nature, and, more ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Intelligent and Fuzzy Systems

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2015